Интернет журныл о промышленности в Украине

Главная Новости

Фототранзистор: принцип работы, как проверить

Опубликовано: 06.09.2018

видео Фототранзистор: принцип работы, как проверить

Фототранзисторы

Фоточувствительные приборы используются в разных отраслях электроники и радиотехники. Все больше сейчас применяется фототранзистор, у которого более простой принцип работы, нежели у фотодиодов.



Что это такое и где применяется

Фототранзистор – это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения. Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов. По принципу действия, они напоминают также фоторезисторы.


Фототранзистор

Фото – фототранзистор

В отличие от фотодиодов, у этих полупроводников более высокая чувствительность.

Где используется фототранзистор :

Охранные системы (в основном, используются ИК-фототранзисторы); Кодеры; Компьютерные логические системы управления; Фотореле; Автоматическое управление освещения (здесь также используется инфракрасный фото-полупроводник); Датчики уровня и системы подсчета данных.

Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ :

Могут производить больший ток, чем фотодиоды; Эти радиодетали сравнительно очень дешевые; Могут обеспечить мгновенный высокий ток на выходе; Главным достоинством приборов является то, что они могут обеспечить высокое напряжение, чего, к примеру, не сделают фоторезисторы.

При этом данный аналог светодиода имеет существенные недостатки , что делает фототранзистор довольно узкоспециализированной деталью:

Многие полупроводниковые устройства выполнены из силикона, они не способны обрабатывать напряжение свыше 1000 вольт. Данные радиодетали очень чувствительны к перепадам напряжения в локальной электрической сети. Если диод не перегорит от скачка напряжения, то транзистор, скорее всего, не выдержит испытания; Фототранзистор не подходит для использования в лампах из-за того, что не позволяет быстро двигаться направленным заряженным частицам.

Принцип работы

Фототранзистор работает так же, как и транзистор, где ток направляется к коллектору, ключевым отличием является то, что в данном приборе, электроток контролируется только двумя активными контактами.

Фото – простой фототранзистор

В простой схеме, при условии, что ничего не подключено к фототранзистору, базовый ток регулируется при помощи определенного оптического излучения, которое определяет коллектор. Электроток попадает на полупроводник только после резистора. Таким образом, напряжение на приборе будет двигаться от высокого к низкому, в зависимости от уровня оптического излучения. Для усиления сигнала можно подключить устройство к специальному оборудованию. Выход фототранзистора зависит от длины волны падающего света. Этот полупроводник реагирует на свет в широком диапазоне волн в зависимости от спектра работы. Выход фототранзистора определяется площадью открытой переходной коллектор-базы и постоянного тока усиления транзистора.

Фототранзистор бывает разного типа действия, про это говорят основные схемы включения устройства. Виды прибора:

Оптический изолятор (напоминает по принципу трансформатор, у которого входы заблокированы при помощи электрических контактов); Фотореле; Датчики. Применяются в охранных системах. Это активные приборы, излучающие свет. При формировании и выделении определенного импульса, полупроводниковый прибор сразу же рассчитывает силу его возвращения. Если сигнал не вернулся или вернулся с другой частотой, то срабатывает сигнализация (как в охранных системах ИК).

Маркировки и основные параметры

Фототранзисторы, которые управляются внешними факторами, имеют обозначение аналогичное обычным транзисторам. На рисунке ниже Вы можете видеть, как такой датчик схематически показывается на чертеже.

Фото – обозначение транзисторов

При этом VT1, VT2 – это фототранзисторы и база, а VT3 – без базы (например, из мышки). Обратите внимание, цоколевка показана также, как у обычных транзисторов.

Вместе с прочими приборами полупроводникового типа (n-p-n), использующимися для трансформации излучения, эти устройства являются оптронами. Соответственно, их можно изобразить как светодиод в корпусе либо как оптроны (с двумя стрелками, находящимися под углом 90 градусов к базе коллектора). Усилитель на большинстве таких схем обозначается так же, как и база коллектора.

Основные характеристики фототранзисторов LTR 4206E, ФТ 1К и ИК-SFH 305-2/3:

Название Ток коллектора, mA Ток фотоэлемента, mA Напряжение, V Область использования Длина волны, nm
LTR 4206E 100 4,8 30 Радиоэлектронные схемы. 940
ФТ 1К 100 0,4 30 Логические системы управления, сигнализация и т. д. 940
ИК-SFH 305-2/3 (Osram) 50 0.25 – 0.8 32 Охранные системы, роботы, датчики препятствия Arduino (Ардуино) на фототранзисторе. 850

При этом светосинхронизатор ФТ 1 выполнен из кремния, что дает ему явное преимущество – долговечность и устойчивость к перепадам напряжения. ВАХ представляют собой формулу:

Фото – формула ВАХ

Расчет производится так же, как и у биполярных транзисторов.

В зависимости от потребностей, Вы можете купить фототранзистор SMD PT12-21, КТФ-102А или LTR 4206E (перед тем, как взять деталь, нужно проверить её работоспособность). Цена от 3 рублей до нескольких сотен.

Видео: как проверить работу фототранзистора

Пример использования

Если Вы хотите своими руками сделать устройство, для которого необходим фототранзистор, можно разработать простую интеллектуальную систему. Робот по этой схеме будет реагировать на свет, в зависимости от настройки, он будет от него убегать или наоборот, выходить на источник освещения.

Чтобы самому сделать робота, необходимо приготовить:

Микросхему L293D; Небольшой моторчик, можно взять даже от детской игрушки; Любые отечественные фототранзисторы и полевые резисторы с сопротивлением на менее 200 Ом; Кабеля для соединения и корпус, где будет расположен механизм. Схема робота

Как видно по схеме, фототранзистор здесь – это своеобразный микроконтроллер, как ATMEGA, который определяет источник света, даже его подключение аналогично. Вы можете при использовании паяльника сделать простой механизм, который будет следовать даже за тенью. Подобные импортные приборы выпускает компания BEAM, но, естественно, там более мощная оптопара. Для работы устройства Вам нужно только правильно подключить фототранзистор к схеме и питанию.

На обозначении есть пункты GDR и VCC. Первое – это заземление, второе – питание. Обратите внимание, рядом с питанием стоит значок 5В – это значит, что батарея должна быть минимум на 5 вольт.

Принцип действия такого робота прост: когда свет попадает на фототранзистор, на микросхеме происходит включение мотора. Это реализуется, потому что приемник подал положительный сигнал. Заводится самодельный мотор и прибор начинает двигаться.

Использование резистора в этой схеме необходимо для регулировки электрического тока. Также от сопротивления резистора зависит долговечность оптической детали, если он перегреется – то фототранзистору потребуется замена. Для работы очень важно подключить все провода также, как и на схеме. Выключатель к роботу можно приделать от обычной шариковой ручки, он будет разрывать связь между микросхемой и фототранзистором. Проверка робота производится путем исследования его реакции на свет и тень.

rss